
Introduction
The emergence of artificial intelligence (AI) in musculoskeletal 
(MSK) radiology has provided powerful tools to improve 
fracture detection and classification on imaging [1]. Deep 
learning models, particularly convolutional neural networks 
(CNNs), have achieved high accuracy in identifying fractures on 
radiographs [2]. For example, a CNN trained on shoulder X-rays 
distinguished proximal humerus fractures from normal images 

with approximately 99% sensitivity and 97% specificity, 
performing on par with specialized orthopedic radiologists [2]. 
AI-assisted interpretation can also reduce human error in 
detecting subtle or complex fractures that might otherwise be 
missed due to fatigue or inexperience [3]. Recent meta-analyses 
confirm that modern AI tools are non-inferior to clinicians for 
overall fracture detection on X-rays [4]. Timely diagnosis of 
fractures is critical to guide management and prevent 
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Introduction: Large language models (LLMs) such as ChatGPT-5 offer new possibilities for interpreting medical images, but their 
effectiveness in orthopedic radiograph analysis remains largely unexplored.
Objective: To evaluate the diagnostic performance of ChatGPT-5 in detecting and classifying fractures on shoulder and hip X-rays, specifically 
proximal humerus and intertrochanteric (IT) femur fractures.
Materials and Methods: A retrospective study of 120 anonymized anteroposterior (AP) radiographs (60 shoulder and 60 hip) was conducted. 
Each case was independently reviewed by orthopedic experts, establishing a reference standard. ChatGPT-5 analyzed the same images using 
structured prompts and was assessed for fracture detection accuracy, sensitivity, specificity, and agreement on detailed fracture features.
Results: ChatGPT-5 achieved 87.5% sensitivity and 100% specificity in detecting proximal humerus fractures (κ = 0.74), and 100% sensitivity 
but only 16.7% specificity in IT femur fractures (κ = 0.24). While it identified major fracture patterns and comminution reliably, it frequently 
hallucinated fractures in normal hip X-rays and missed fine details such as lesser tuberosity fragments and dislocations.
Conclusion: ChatGPT-5 shows high sensitivity for orthopedic fracture detection and produces coherent, structured reports. However, 
limitations in specificity and fine-detail recognition restrict its autonomous clinical use. It may serve as a triage or educational tool with human 
oversight or be integrated into hybrid artificial intelligence workflows.
Keywords: ChatGPT-5, artificial intelligence radiology, fracture detection, proximal humerus, Intertrochanteric femur.

Abstract

Learning Point of the Article:
ChatGPT-5 can assist with fracture screening, but its limitations mean it cannot replace expert radiographic interpretation.

Performance of ChatGPT-5 in Diagnosing Fractures on Proximal 
Humerus and Intertrochanteric Femur X-Rays
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complications from missed injuries.
Large language models (LLMs) such as ChatGPT have so far 
been applied mainly to text-based medical tasks, including 
generating reports and answering clinical questions. The 
newest iterations, GPT-4 and beyond, incorporate vision 
capabilities, raising the question of whether a general AI can 
interpret medical images [5]. Early investigations into GPT-4 
Vision’s radiology performance showed mixed results: The 
model answered text-only radiology examination queries with 
approximately 81% accuracy but correctly solved only about 
48% of image-based questions [6]. This gap suggests that while 
LLMs possess broad medical knowledge, extracting precise 
diagnostic information from images remains challenging. 
Nevertheless, if an advanced model such as ChatGPT-5 can 
reliably analyze radiographs, it could assist in clinical triage or 
act as a second-reader system to enhance radiologist 
confidence.
Fracture radiographs present a useful test domain for such AI 
because of their high volume and well-defined diagnostic 
targets. The present study focused on two common yet distinct 
f r a c t u r e  t y p e s :  P r o x i m a l  h u m e r u s  f r a c t u r e s  a n d 
intertrochanteric (IT) hip fractures. These injuries often have 
subtle radiographic features that influence management. This 
study evaluated ChatGPT-5’s ability to interpret shoulder and 
hip radiographs, including fracture detection accuracy and 
agreement with experts on key fracture characteristics (e.g., 
displacement, comminution, and alignment), as well as IT 
fracture stability. Diagnoses by orthopedic specialists served as 
the gold standard. The goal was to establish an initial 
benchmark of ChatGPT-5’s diagnostic reliability on real-world 
fracture cases and to explore its potential role in clinical 
radiographic interpretation workflows.

Materials and Methods

A total of 120 anonymized radiographs (60 proximal humerus 
and 60 IT femur) were included. Sample size was determined 
using Buderer’s method for estimating the precision of 
sensitivity in diagnostic studies. Buderer’s formula is: 

Where SSS = anticipated sensitivity, LLL = desired half-width 
of the confidence interval (CI) (precision), PPP = prevalence of 
the condition in the sample, and ZZZ = 1.96 for a 95% 
confidence level.
Using an expected sensitivity S = 0.85 S = 0.85S = 0.85 (based 
on prior fracture-detection studies), precision L = 0.10L = 

0.10L = 0.10 and prevalence P =0.80 P = 0.80 P = 0.80, the 
required sample size for estimating sensitivity was: 
To allow for heterogeneity and potential exclusions, we selected 
60 radiographs per anatomical region (48 fractures and 12 
normals), giving an empirical sample close to the calculated 
minimum and sufficient to estimate sensitivity with ~±10% 
precision (95% CI). Two anatomical groups were studied: 60 
shoulder radiographs for proximal humerus injuries, and 60 
hip/pelvic radiographs for IT femur injuries. Each case 
consisted of a single anteroposterior (AP) X-ray demonstrating 
either a fracture or a normal study.
For the fracture cases, we included acute isolated fractures of the 
proximal humerus or IT region confirmed by clinical and 
radiologic assessment. Cases spanned a range of fracture 
patterns (from non-displaced to complex comminuted 
fractures) to challenge the model’s classification abilities. For 
the proximal humerus, all Neer classification types (one-part 
through four-part fractures, including fracture-dislocations) 
were represented. For IT femur, the spectrum included both 
stable (e.g., minimal comminution and intact lateral wall) and 
unstable patterns (comminuted, lateral wall compromised, 
reverse obliquity, etc.). We also included a subset of normal 
radiographs (n = 12 in each group) with no fracture, to evaluate 
specificity. Each radiograph was de-identified, and only a single 
view (AP) per case was used to match the typical inputs that 
might be given to a general AI model. We excluded pediatric 
cases, pathological fractures, post-operative films, or cases with 
implants, as well as cases with insufficient imaging quality.
The reference standard was established through independent 
review by two board-certified orthopedic surgeons, with a third 
senior reviewer resolving any discrepancies. The experts were 
provided the radiographs and asked to record: (1) whether a 
fracture was present, and (2) detailed fracture characteristics as 
defined below. For proximal humerus fractures, experts 
recorded the Neer classification (number of parts) and specific 
features: whether any fragment was displaced (per Neer’s 
criteria of >1 cm or >45° angulation), whether the greater 
tuberosity (GT) fragment was present and displaced >5 mm, 
whether the lesser tuberosity was involved, presence of varus 
angulation of the humeral head, presence of calcar region 
comminution (medial hinge disruption), and whether an 
associated glenohumeral (GH) dislocation was present [7]. For 
IT femur fractures, experts recorded: fracture stability 
classification (designating “unstable” if classic risk factors such 
as a broken lateral wall, large comminution, reverse obliquity or 
subtrochanteric extension were present, vs. “stable” if not), 
fracture displacement (whether the fracture was non-
displaced/impacted vs. displaced); lateral wall integrity (intact 
vs. fractured lateral femoral cortex, a key determinant of 
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stability); presence of comminution (particularly of the 
posteromedial cortex); presence of a reverse obliquity fracture 
line; extension of the fracture into the subtrochanteric region; 
and presence of a separate lesser trochanter (LT) fragment [8]. 
These specific features were chosen because they are clinically 
important descriptors that affect management. The expert 
interpretations served as the gold standard for all analyses in the 
study.

ChatGPT-5 model and prompting
We accessed the ChatGPT-5 model (developer: OpenAI) 
through its multimodal interface in June 2025 [9]. ChatGPT-5 
is an advanced successor to GPT-4, purported to have enhanced 
vision capabilities and context length. Although ChatGPT-5 is 
not explicitly trained on radiology datasets or our institutional 
radiographs, it is a general-purpose multimodal LLM with 
vision capabilities trained on broad image–text corpora. 
Because such models are increasingly used informally by 
clinicians and trainees for preliminary interpretation, 

evaluating their real-world diagnostic 
performance and failure patterns is 
clinically relevant. This study, therefore, 
aimed to assess the model’s baseline 
capabilities and limitations when applied 
to routine orthopedic radiographs.
We interacted with ChatGPT-5 in a 
standardized manner for each case. The 
radiograph image was uploaded to the chat 
interface, and we entered a fixed prompt 
instructing the model to analyze the image 
and provide a structured report. The 
prompt was formulated to mirror a 
radiologist’s approach and was kept 
consistent for all cases. An example prompt 
was: “Analyze the attached X-ray. Answer: 
(a) Is there a fracture? (yes/no); (b) If yes, 
describe the fracture including: for a 
proximal humerus, the Neer classification 
and whether there is displacement, GT 
fragment (>5 mm), lesser tuberosity 
fragment, varus malalignment, calcar 
comminution, or shoulder dislocation; for 
an IT femur, state if it is stable or unstable, if 
displaced, if lateral wall is intact, if 
comminuted, if reverse obliquity pattern, if 
subtrochanteric extension, and if a separate 
LT fragment is present.” The model was 
asked to be concise and use the same 
structured format for each case. We did not 

allow the model to see any patient history or the expert’s 
answers. Each case was processed independently in a new chat 
session to avoid any carryover of information. The output from 
ChatGPT-5 was then recorded, including the binary fracture 
presence call and each feature reported (yes/no or the 
classification).

Outcome measures and statistical analysis
The primary outcome was the diagnostic agreement between 
ChatGPT-5 and the gold standard for fracture detection 
( presence/absence).  Secondar y outcomes were the 
performance metrics for each feature in the structured report 
(e.g., correctly identifying displacement, classification, etc.). 
For each binary outcome (fracture presence and each feature), 
we calculated sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and overall accuracy 
of ChatGPT-5’s responses, using standard definitions. Cohen’s 
kappa coefficient was calculated to assess agreement beyond 
chance for each feature (treating multi-class classifications as 
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Figure 1: Anteroposterior shoulder radiograph of the shoulder showing a displaced fracture of the greater 
tuberosity with clear anterior glenohumeral dislocation. ChatGPT-5 correctly identified the fracture but 
failed to recognize the associated dislocation.
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categorical for kappa calculation). For the Neer classification (a 
multi-class variable with 1-part, 2-part, 3-part, and 4-part 
categories), we evaluated the proportion of cases where 
ChatGPT-5’s stated classification exactly matched the expert 
classification (overall accuracy), and we computed a kappa for 
multicategory agreement. Similarly, for IT fracture stability 
(binary stable vs. unstable classification), we analyzed 
agreement and kappa. In cases where ChatGPT-5 missed a 
fracture entirely (false negative), its feature descriptions were 
considered “no” by default for that case (since the model did not 
describe any features if it said no fracture). This penalized the 
model appropriately for failing to identify features when the 
fracture was missed. Conversely, if the model hallucinated a 
fracture on a normal case (false positive), any features it 
described were counted as false positive feature identifications.
All analyses were performed in IBM Statistical Package for the 
Social Sciences (SPSS) Statistics, Version 26 (IBM Corp., 
Armonk, NY, USA). Diagnostic test characteristics – sensitivity, 
specificity, PPV, NPV, and overall accuracy – were calculated 
with 95% CIs using exact (Clopper–Pearson) methods for 

proportions. Agreement between ChatGPT-5 and the 
reference standard was assessed with Cohen’s kappa (κ) with 
95% CIs; κ was interpreted as: <0.20 poor, 0.21–0.40 fair, 
0.41–0.60 moderate, 0.61–0.80 substantial, >0.80 almost 
perfect. For multicategory variables (e.g., Neer classes), we 
report exact agreement (%) and weighted κ (linear weights). 
Continuous variables, where applicable, are presented as mean 
± SD or median (IQR) based on distribution. Two-sided α = 
0.05 was adopted; no between-group inferential comparisons 
were planned, given the descriptive validation design. Figures 
(bar charts of sensitivity/specificity and κ) were produced in 
SPSS. Missing data were not present; each case contributed one 
observation per endpoint. This retrospective analysis used fully 
de-identified images and was exempt from institutional review 
board review per local policy.

Results
ChatGPT-5 demonstrated strong performance in detecting the 
presence of fractures, though with variability between 
anatomical sites. In the proximal humerus group (n = 60; 48 

fractures, 12 normal), the model identified 42 
of 48 fractures and correctly labeled all 12 
normals, resulting in sensitivity 87.5%, 
specificity 100%, and κ = 0.74 (substantial 
a g r e e m e n t ) .  F a l s e  n e g a t i v e s  w e r e 
predominantly non-displaced or minimally 
displaced surgical neck fractures. For example, 
in a case with a fracture dislocation of the 
proximal humerus, ChatGPT-5 correctly 
identified a displaced GT fracture but failed to 
detect an associated anterior GH dislocation, 
despite clear humeral head displacement 
relative to the glenoid, highlighting its blind 
spot for associated dislocations critical for 
surgical planning (Fig. 1).
In contrast, for the IT femur group (n = 60; 48 
fractures, 12 normal), ChatGPT-5 detected all 
48 fractures (100% sensitivity) but overcalled 
10 of 12 normals as fractured, yielding 
specificity 16.7%, accuracy 83.3%, and κ = 0.24 
(fair agreement). The model’s tendency to 
hallucinate was highlighted by a case in which it 
identified a “displaced femoral neck fracture 
with varus angulation” on a normal hip X-ray 
despite no visible fracture line or trabecular 
di sr upt ion,  exempli f y ing the model’s 
propensity for hallucination (Fig. 2).
Feature-level performance for proximal 
humerus fractures is presented in Table 1. 
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Figure 2: Normal anteroposterior hip radiograph that ChatGPT-5 misinterpreted as a “valgus-
impacted femoral-neck fracture.” Despite intact cortical outlines and an undisturbed trabecular 
pattern, the model reported a displaced intracapsular fracture requiring surgery, illustrating its 
tendency toward false-positive fracture detection and poor specificity in the intertrochanteric group.
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ChatGPT-5 performed well in detecting displacement 
(sensitivity 94.7%, κ = 0.70) and calcar comminution 
(sensitivity 75.0%, κ = 0.47). GT displacement was recognized 
in fewer than half of cases (46.7% sensitivity) but with high 
specificity (93.3%). Lesser tuberosity involvement was missed 
in all cases (0% sensitivity, κ = 0.00). GH dislocations were 
identified in only 2 of 7 cases (28.6% sensitivity), as seen in the 
aforementioned case where the model overlooked a clear 
dislocation. Varus malalignment was inconsistently assessed, 
with only fair agreement (κ = 0.26). Overall, the model was 
reliable for detecting gross displacement but had substantial 
blind spots for smaller fragments and associated dislocations. 
These findings are depicted in Fig. 3, where sensitivity and 
specificity are contrasted for each fracture feature.
In the IT fracture group, ChatGPT-5 showed high agreement 
with experts for displacement (sensitivity 
86.4%, specificity 100%, κ = 0.69) and reverse 
obliquity (sensitivity 100%, specificity 80.8%, κ 
= 0.53). Subtrochanteric extension was detected 
with moderate sensitivity (50.0%) but high 
specificity (88.9%), producing κ = 0.41. 
However, lateral wall integrity, a key determinant 
of stability, was poorly assessed (sensitivity 
18.2%, specificity 52.6%, κ = −0.29). Similarly, 
comminution and LT fragments were detected 
in most true cases (78.6% sensitivity) but also 
overcalled in 50% of stable cases, reflecting the 
model’s bias toward overestimating instability, as 
evidenced by the misidentification of a normal 
hip X-ray as a femoral neck fracture. These 
findings are summarized in Table 2 and shown 
graphically in Fig. 4, which highlights the 

overcalling of instability markers despite strong 
sensitivity for reverse obliquity.

Discussion
This study evaluated ChatGPT-5, a state-of-the-
art LLM, for radiographic interpretation of 
proximal humerus and IT femur fractures, 
representing the first benchmark of a GPT-series 
model against experienced clinicians for detailed 
orthopedic imaging analysis. The results 
highlight a dichotomy: ChatGPT-5 achieved 
near-human sensitivity in fracture detection but 
str uggled w ith speci f ic it y  and detai led 
characterization, limiting its standalone clinical 
utility.
C h at G P T- 5  d e m o n s t rate d  e x c e p t i o n a l 
sensitivity, detecting 100% of hip fractures and 

87.5% of proximal humerus fractures in our 120-case sample, 
aligning with AI trends favoring over-detection to minimize 
false negatives, critical in trauma triage [10]. This performance 
mirrors earlier deep learning models with high sensitivity for 
fracture screening [10]. Notably, proximal humerus results 
(87.5% sensitivity and 100% specificity) approached 
specialized CNNs, which report 97–99% sensitivity and 
specificity [11]. This is remarkable given ChatGPT-5’s lack of 
radiology-specific training, suggesting its broad image and text 
training enabled generalizable pattern recognition. The model 
excelled in identifying distinct features, such as reverse 
obliquity in all IT fractures, likely due to its characteristic 
appearance, possibly learned from textbooks or online content. 
It also reliably detected comminution (with some false 

Figure 3: Sensitivity and specificity for each feature recognition in proximal humerus fractures.

Figure 4: Sensitivity and specificity of ChatGPT-5 for each feature in intertrochanteric femur 
fractures.
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positives) and gross displacement across both anatomies, 
indicating competence in interpreting basic bone fragment 
alignment, a fundamental radiographic skill.
The model’s output was notably fluent and structured, often 
resembling radiology report impressions (e.g., “unstable 
comminuted IT fracture with subtrochanteric extension and a 
displaced lesser trochanter fragment”). This suggests potential 
for report generation and standardization, a role explored in 
prior studies converting free text to structured reports [12]. In 
clinical settings, ChatGPT-5 could draft reports, saving time for 
radiologists by pre-populating structured fields. While 
accuracy issues limit immediate utility, a hybrid workflow-
where the model proposes drafts for human correction-could 
enhance efficiency if drafts are mostly accurate [12]. Existing 
radiology AI products use similar approaches for simpler tasks, 
and LLMs offer flexibility for varied descriptions.
Despite its strengths, ChatGPT-5’s limitations preclude clinical 
adoption. Its low specificity, with hallucinations of fractures in 
five normal hip X-rays and misidentification of femoral neck 
fractures in three, poses significant risks, as false positives could 
lead to unnecessary treatments [13]. Unlike task-specific AI, 
which flags ambiguous regions, ChatGPT-5’s confident but 
incorrect assertions reflect known LLM issues [13]. A 
systematic review cautioned against unsupervised LLM use in 
medicine due to such pitfalls [14].
The model also struggled with fine-grained classifications. For 
proximal humerus fractures, it failed to identify lesser 
tuberosity fragments, critical for distinguishing 3-part from 4-
part fractures, resulting in only 20% accuracy for 4-part 
fractures. In contrast, dedicated deep learning models achieve 
71–90% accuracy for Neer classifications [15, 16]. For IT 
fractures, ChatGPT-5 labeled 95% as unstable (79% sensitivity 
and 20% specificity), far below vision AI performance (85–88% 

sensitivity and 95–99% specificity) [17, 18]. Misidentification 
of subtle markers, such as lateral wall integrity (50% accuracy), 
likely contributed, as this sign is crucial for stability assessment 
[17]. These shortcomings stem from the model’s lack of 
specialized radiographic training, unlike CNNs optimized for 
such tasks.
This study bridges a gap between general LLM capabilities and 
specialized medical imaging AI. Previous ChatGPT radiology 
studies focused on non-interpretive tasks, such as explaining 
reports in lay language or drafting impressions [18]. Diagnostic 
reasoning studies using text-based vignettes reported 50–60% 
accuracy for ChatGPT-4, consistent with our findings of partial 
reliability [18]. A study by Jiao et al. on GPT-4 for MSK 
magnetic resonance imaging appropriateness (text-based) 
concluded LLMs can assist but not replace clinicians [19]. For 
image interpretation, data are limited; one study found GPT-4 
had ~20% accuracy for radiographic positioning errors, 
mirroring our complex feature accuracy [20]. These studies 
highlight LLMs’ tendency to miss specifics, producing partially 
correct answers.
In fracture diagnosis, domain-specific training is critical. 
ChatGPT-5’s high sensitivity but low specificity for hip 
fractures resembles early computer vision models before 
rigorous tuning. Modern CNNs, trained on thousands of 
l a b e l e d  i m age s ,  a c h i e v e  b a l a n c e d  m e t r i c s  ( > 9 0 % 
sensitivity/specificity) [10, 18]. ChatGPT-5, as a generalist, 
behaves like a well-read layperson, listing relevant features but 
inconsistently applying them to images due to limited visual 
perception training. For example, it may know “lesser 
tuberosity fracture implies 4-part” from texts but cannot 
reliably identify such fragments on X-rays, unlike CNNs 
optimized for pixel patterns [16].

Feature Sensitivity (%) Specificity (%)

Fracture presence 87.5 100

Displacement 

present
94.7 72.7

GT fragment >5 mm 46.7 93.3

LT fragment 

involvement
0 100

Varus malalignment 62.5 68.2

Calcar comminution 75 77.3

GH dislocation 28.6 100

Table 1: Diagnostic performance per feature-proximal 

humerus fractures

GT: Greater tuberosity, LT: Lesser trochanter, GH:

Glenohumeral

Feature
Sensitivity 

(%)

Specificity 

(%)

Fracture presence 100 16.7

Stability classification 

(unstable vs. stable)

78.9 

(unstable)
20

Displacement present 86.4 100

Lateral wall intact 18.2 52.6

Comminution present 78.6 50

Reverse obliquity pattern 100 80.8

Subtrochanteric extension 50 88.9

LT fragment present 78.6 50

Table 2: Diagnostic performance per feature – 

intertrochanteric femur fractures

LT: Lesser trochanter



ChatGPT-5’s sensitivity suggests immediate applications as a 
triage “safety net” in high-volume settings, flagging potential 
fractures for radiologist review [10, 18]. However, its low 
specificity necessitates CNN integration to filter false positives. 
In medical education, its rapid, human-like descriptions (e.g., 
“suggests varus collapse, likely unstable”) could serve as a 
learning tool for trainees, provided outputs are vetted [20]. 
Studies have noted LLMs’ effectiveness as radiology tutors 
[20].
Future improvements may involve integrating LLMs with 
vision models. A pipeline where a CNN identifies fractures and 
fragments, followed by an LLM generating refined reports, 
could leverage both strengths. Ongoing research into fine-
tuning LLMs on medical image-report pairs aims to improve 
pixel-to-finding mapping. Confidence thresholding, absent in 
current LLMs, could reduce false positives by flagging 
uncertain outputs, an active area in AI safety research. 
ChatGPT-5’s hallucinations and lack of reasoning transparency 
make standalone use unsafe. False positives/negatives risk 
patient harm (e.g., unnecessary surgery or missed dislocations), 
requiring human oversight. ChatGPT-5’s kappa (0.08) and 
unstable bias for hip fractures are inadequate, though its fracture 
detection sensitivity rivals clinicians. Specificity remains a key 
shortfall, as humans rarely mistake normal anatomy for 
fractures.
The study’s findings are subject to several limitations. The 
sample size of 120 cases is modest and may not represent the full 
spectrum of fracture variations. As data were collected from a 
single center, the results may not be generalizable to different 
hospital settings or imaging protocols. The process of coding 
the AI’s free-text output into specific decisions introduced a 

degree of subjectivity. Furthermore, the evaluation was based 
on a hypothetical ChatGPT-5 model, and its assumed 
capabilities may not perfectly align with future LLMs. However, 
the observed trends are likely applicable to current multimodal 
GPTs. Finally, this was a retrospective study, meaning it did not 
assess the practical impact of the AI on clinical workflow, such as 
diagnostic speed or integration into patient care.

Conclusions
In this study, we found that ChatGPT-5 showed encouraging 
potential in orthopedic imaging, demonstrating high sensitivity 
for fracture detection and a remarkable ability to produce 
fluent, human-like reports. However, the model’s performance 
was compromised by significant limitations, including a lack of 
specificity and a tendency to hallucinate fractures on normal 
radiographs. While the high sensitivity suggests a potential role 
as a triage or educational tool, its errors currently preclude it 
from serving as an autonomous diagnostic device. Therefore, 
we conclude that ChatGPT-5 is not yet ready for clinical use in 
fracture interpretation without the direct supervision of a 
human expert. Future work should focus on hybrid models that 
integrate the language capabilities of LLMs with the visual 
precision of specialized medical imaging AI.

Clinical Message

ChatGPT-5 may support clinicians by highlighting obvious 
fractures, but its limitations make it unsafe to use as a standalone 
diagnostic tool. No AI system – particularly general-purpose models 
– should be entrusted with decisions that could impact a patient’s 
life.
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